Laparoscopic transcapsular adenomectomy: a step by step description of the technique and results

By Anastasios Asimakopoulos
Laparoscopic transcapsular adenomectomy: a step by step description of the technique and results

Dr. Anastasios Asimakopoulos
Specialist in Urology
Fellow of the Clinique Saint-Augustin, Bordeaux, France
Large adenomas: which definition?

- >60 mL?
- >80 mL?
- >100 mL?

...this upper limit depends on the surgeon’s experience, resection speed, and resectoscope sizes.
Complications

- **Trasfusioni** 8,0% 1-13
- **Sindrome post-TUR** 1,0% 0,1-2%
- **Mortalità (IMA)** 0,2% 0,004-3,3
- **Stenosi uretrale** 6,3% 0,6-10,1
- **Stenosi del collo** 1,5% 0,9-3,2
- **Incontinenza urinaria grave** 1,0% 0,6-1,4
- **Urgenza "de novo"** 20% 7-43
- **Re-intervento per recidiva** 5,0% 2%/anno
- **Deficit erettile** 6.5% 3,4-32,4%
- **Eiaculazione retrograda** 74% 60-100%
Long-term risk of mortality

- The 8-year incidence of myocardial infarction was identical after TURP (4.8%) and OP (4.9%).
- Mortality rates at 90 days (0.7% vs. 0.9%), one year (2.8% vs. 2.7%), 5 years (12.7% vs. 11.8%) and 8 years (20% vs. 20.9%) were almost identical.

Retreatment

- 20,671 men, who underwent TURP in Austria→overall reported re-treatment rates (including secondary TURP, urethrotomy, and bladder neck incision) were 5.8%, 12.3%, and 14.7% at 1, 5, and 8 years of follow-up, respectively.
- The incidence of secondary TURP was 2.9%, 5.8% and 7.4% for the same follow-up periods.
“I always resect out to the surgical capsule!”

- **TURP leaves about half of the adenoma. Therefore, TURP might be very difficult for complete resection of an adenoma.**

Urologia Internationalis 2005;74:102-107
Endoscopia della prostata: TURP

Limits

- Volume ghiandolare >70 cc
 - Velocità max di resezione di 1 cc/min.
 - Tempo resezione ≤1h

- Stenosi dell'uretra

- Anchilosi anche

- Controindicazioni ad anestesia (periferica/generale)
• prostatic adenomas >45 g
• procedures lasting >90 min
• patients aged > 80 years
• history of acute urinary retention.

• Increased operative morbidity of TURP
Bipolar TURP

B-TURP offers an attractive alternative to monopolar TURP in patients with BPO, BPE, and LUTS with similar efficacy but lower morbidity.

Long-term results of B-TURP are still awaited.

In a recent study with a follow-up of 3 years, the initially observed significant improvements remained durable for the bipolar and monopolar arm in terms of IPSS (6.8 vs. 6.2) and Qmax (20.5 vs. 21.5 mL/s).
KTP laser

Advantages
- Good functional outcomes
- Good haemostasis
- Reduced catheterization
- Reduced hospital stay
- Irrigation not necessary

Disadvantages
- No possibility for definitive histology
- Absence of long-term data
- Costs
- Learning curve
Holmium laser

Advantages
- Efficacy
- Short hospital stay
- Reduced duration of catheterization
- Reduced bleeding
- Irrigation not necessary

Disadvantages
- Steep learning curve
- Costs
- Complications
- Necessity of morcellation
5. Conclusions

HoLEP is a safe and minimally invasive technique for the treatment of small and large prostates. Even though HoLEP takes longer to perform than OP, it is associated with reduced perioperative morbidity, significantly shorter catheterisation, and a shorter hospital stay. Furthermore, functional results are comparable at the 2-yr follow-up; thus, HoLEP is an attractive alternative to OP.
5. Conclusions

HoLEP is a highly effective technique for immediate deobstruction of BOO. It can be performed on prostates of all sizes. Up to at least 5 yr after the operation, the results are as durable as those of OP, and the reoperation rates are equally low. In light of HoLEP’s significantly lower perioperative morbidity, this procedure might be considered not only as an alternative to OP, but as the new gold standard for surgical treatment of large prostate adenoma.
HOLMIUM LASER ENUCLEATION FOR PROSTATIC ADENOMA: ANALYSIS OF LEARNING CURVE OVER THE COURSE OF 70 CONSECUTIVE CASES

NARIHITO SEKI,* OSAMU MOCHIDA, NAOKO KINUKAWA, KAZUYUKI SAGIYAMA AND SEIJI NAITO

From the Departments of Urology (NS, SN) and Medical Information on Science (NK), Graduate School of Medical Sciences, Kyushu University and Department of Urology (OM, KS), Hakuaikai Hospital, Fukuoka, Japan

Curva di apprendimento: 50 casi
Surgical alternatives: open adenomectomy

Advantages
- Good and durable clinical results
- Lower re-operation rates than transurethral surgery

Disadvantages
- Invasive
- High overall complication rate
- Cosmesis

<table>
<thead>
<tr>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>A</td>
</tr>
</tbody>
</table>

Open prostatectomy is the first choice of surgical treatment in men with BPH-LUTS refractory to drugs, BPO, and prostate sizes > 80-100 mL in the absence of Holmium lasers.
Storical aspects

- In 2002 Mariano described the first laparoscopic prostatectomy for BPH.
- In 2005 Sotelo presented 17 cases of laparoscopic simple retropubic prostatectomy.
- After these initial presentations, laparoscopic simple prostatectomy has spread.
Surgery Illustrated – Surgical Atlas
Laparoscopic treatment of benign prostatic hyperplasia (BPH): overview of the current techniques

Anastasios D. Asimakopoulos*, Camille Mugnier†, Jean-Luc Hoepffner†, Laurent Lopez†, Denis Rey†, Richard Gaston† and Thierry Piechaud†
*Department of Surgery, Division of Urology, University Tor Vergata, Rome, Italy; and †Division of Urology, Clinique Saint-Augustin, Bordeaux, France
Techniques of enucleation

Extra or intraperitoneal

Transcapsular or transvesical

With or without finger assistance
• More operative space
• No necessity of developing the extraperitoneal space → saving of time
• Repeats the steps of the open transvesical approach

But...

• Risks for bowel complications
 • (ileus, peritonitis, bowel injuries)
• Urine leak from the bladder suture (that could determine a urine peritonitis)
• Necessity of a steep Trendelenburg position
Indications for LSP

- Large prostates
- BPH accompanied by bladder diverticula or bladder stones
- Difficulty to insert the urethroscope because of a serious urethral stricture
- Difficulty in assuming the lithotomy position (for example in hip anchilosis)
Advantages

1) Better control of bleeding due to magnified view and gas pressure acting in a closed space.
2) Less morbidity and pain with respect to OP because of smaller incisions and absence of retractor use.
3) Smaller surgical incisions → better cosmesis / less risk of wound infections / less use of analgesics → shorter hospital stay and earlier return to normal activities.
Drawbacks

1) Prolonged operative duration.
2) Absence of haptics/force feedback (balanced however by the better view offered by the laparoscope).
3) Learning curve.
4) A big adenoma would require a big incision for its removal → morcellation??
5) Costs???
Laparoscopic treatment of benign prostatic hyperplasia (BPH): overview of current techniques. Do our patients need it?

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BJU International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>BJU-2011-0668</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Letter to the Editor</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>03-May-2011</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>PROTOGEROU, VASSILIS; IASO GENERAL, UROLOGICAL</td>
</tr>
<tr>
<td>keywords:</td>
<td>minimaly invasive, BPH, laparoscopic prostatectomy, open prostatectomy</td>
</tr>
<tr>
<td>Abstract:</td>
<td>Laparoscopic prostatectomy for BPH is a minimally invasive technique for BPH. Needs well trained urologists and is considerable more difficult for the alterantine options for treating BPH.</td>
</tr>
</tbody>
</table>
Dear Sirs,

We read your interesting article “Laparoscopic treatment of benign prostatic hyperplasia (BPH): overview of current techniques” published at BJU Int 2011:107, 1168-1182. We understand that since it is a description-only paper there are no results regarding the outcome of the operation (complication rate, postoperative flow measurements etc). Anyway, we would be interest to see the results from your technique.

We have some comments regarding this technique. First of all it is a challenging operation as you also mentioned and maybe cannot be perform by all the urologists. Of course the complete removal of large adenomas seems promising for better functional results comparing to other minimal invasive techniques (like the greenlight laser) that might not be able to remove the whole of the adenoma. Having that in mind we believe that laparoscopic procedure should be compared to open prostatectomies performed for big prostates and not to TUR operations.

Second, the key point of this operation is to make an opening to the body surface so that we can have access to the prostate either transvesical or directly to the capsule. After that, enucleation is performed. It is interesting to notice that finger assisted enucleation is encouraged as it is quicker. We think that laparoscopic techniques for this operation is “too much”. It is much easier to make a small incision at the skin and then open the bladder and perform finger enucleation of the prostate. Laparoscopic operations are more expensive and usually need more operation time and in order to justify their existence they should have significant advantages comparing to the standard open procedures.

We believe that simple techniques are preferable providing that they have good results. We have made a small modification in the standard transvesical prostatectomy and we performed it through a small incision (3 cm) in a short period of time, with short hospital staying (3 days) and good functional results. It is a much simple operation and although experience is needed it can be more easily learned and performed by more urologists than the laparoscopic prostatectomy.

The technique described in your paper is an excellent technique performed by experienced and well trained urologist. This is what makes it a very interesting alternative but it is also its main drawback. We believe that operations that stand the test of time are those that are simple and effective. Evolution should focus not only to operations that “can be performed” as a proof to our technical evolution and superiority compared to the older years of urology but also to those who are simple and equally, if not more, effective.
Aim of our manuscript was to provide a detailed description of the surgical technique of laparoscopic adenomectomy and not to prove its superiority or even lack of inferiority when compared to the standard open procedure.
Open prostatectomy is the most **effective** and **durable** procedure for the treatment of BPH-LUTS for men with prostates >80-100 mL in the absence of Holmium laser.

In the same guidelines, however, open simple prostatectomy is also considered **the most invasive** surgical treatment of BPH.
Surgeons are responsible to find, for each specific surgical modality, its right indication and use, based on:
- technical feasibility,
- safety,
- results
- cost-effectiveness,
- man-powered related issues that are characteristic of each medical centre (i.e. laparoscopic skills?).
Feasibility

- The feasibility of LSP has been already demonstrated in several manuscripts for large glands (volume higher than 80ml).
- We acknowledge that a surgical procedure that is technically feasible should not necessarily be routinely implemented.
- However, the first between the aforementioned parameters is satisfied.
Safety

- Current evidence suggests that LSP when compared to OSP shows a significant advantage in terms of blood loss.
- Complication rate is also acceptable
- Postoperative pain seems to be lower (due to the absence of retractor use)
- Others suggest a reduced risk of surgical infections due to smaller incisions
- Consequently safety requirement is satisfied and the complication profile is respected.
Laparoscopic Simple Prostatectomy

<table>
<thead>
<tr>
<th>Author</th>
<th>Nº patients</th>
<th>Prostate volume (mL)</th>
<th>Operative time</th>
<th>Blood loss</th>
<th>Hospital stay (d)</th>
<th>Catheter (d)</th>
<th>Transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktay 2011</td>
<td>16</td>
<td>147 (80-200)</td>
<td>133 (75-210)</td>
<td>134 (50-300)</td>
<td>3.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>van Velthoven 2004</td>
<td>18</td>
<td>95.1+28.1</td>
<td>145+32.5</td>
<td>192+178</td>
<td>5.9+5.5</td>
<td>3+2.4</td>
<td></td>
</tr>
<tr>
<td>Mariano 2006</td>
<td>60</td>
<td>144.5+41.74</td>
<td>138.48+23.38</td>
<td>330.98+149.52</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Zhou 2009</td>
<td>45</td>
<td>78.2+16.3 (enucleated)</td>
<td>105.4+26.5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sotelo 2005</td>
<td>17</td>
<td>93</td>
<td>156 (85-380)</td>
<td>516 (100-2500)</td>
<td>2</td>
<td>6.3 (3-7)</td>
<td>5</td>
</tr>
<tr>
<td>Ramón de Fata Chillón F 2010</td>
<td>10</td>
<td></td>
<td>112.5 (80-135)</td>
<td></td>
<td>3.5 (2-5)</td>
<td>7 (3-21)</td>
<td></td>
</tr>
<tr>
<td>Baumert 2006</td>
<td>30</td>
<td>122+39</td>
<td>115+30</td>
<td>367+363</td>
<td>5.1+1.8</td>
<td>4+1.7</td>
<td></td>
</tr>
<tr>
<td>McCullough 2009</td>
<td>96</td>
<td>95.1+32.9</td>
<td></td>
<td>367+363</td>
<td>6.3+1.9</td>
<td>5.2+2.6</td>
<td></td>
</tr>
<tr>
<td>Yun 2010</td>
<td>11</td>
<td>109.3</td>
<td>191.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castillo 2011</td>
<td>59</td>
<td>108.5 (75-150)</td>
<td>123 (90-180)</td>
<td>415 (50-1500)</td>
<td>3.5 (2-7)</td>
<td>4.2 (3-7)</td>
<td>4</td>
</tr>
<tr>
<td>Chlosta 2011</td>
<td>66</td>
<td>85.5 (enucleated)</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Porpiglia 2006 Finger-assisted</td>
<td>20</td>
<td>69.52+21.5 (enucleated)</td>
<td>107.25+34.9</td>
<td>411.6+419</td>
<td>7.8+4.1</td>
<td>6.3+3.7</td>
<td></td>
</tr>
</tbody>
</table>
Functional outcome

- Regarding the functional outcome, laparoscopic adenomectomy has produced equivalent results with the open counterpart, even after a long follow-up (in terms of IPSS score, Qmax, post-void residue volume).
- The simple fact, however, that it has not demonstrated any disadvantages when compared to the gold-standard open approach is an aspect that according to the same authors, already favors laparoscopy, considering its mininvasive character.
Functional outcomes of LSP

<table>
<thead>
<tr>
<th>Author</th>
<th>IPSS pre</th>
<th>IPSS post</th>
<th>Qmax pre</th>
<th>Qmax post</th>
<th>PVR pre</th>
<th>PVR post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktay 2011</td>
<td>25.4</td>
<td>9.2</td>
<td>4</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou 2009</td>
<td>25.5</td>
<td>6.2</td>
<td>6.1</td>
<td>18.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotelo 2005</td>
<td>24.5</td>
<td>9.9 (AUASS)</td>
<td>7</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baumert 2006</td>
<td>22.4</td>
<td>5.7</td>
<td>8.1</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yun 2010</td>
<td>26.86</td>
<td>4.2</td>
<td>4.5</td>
<td>15.5</td>
<td>106</td>
<td>24.1</td>
</tr>
<tr>
<td>Chlostia 2011</td>
<td>29.5</td>
<td>5.8</td>
<td>5.8</td>
<td>18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porpiglia 2006</td>
<td>20.9</td>
<td>10</td>
<td>8.8</td>
<td>27.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Costs

- Laparoscopic operations are generally considered more expensive when compared to the open counterpart. In our case this is partially true.
- The cost of laparoscopic armamentarium is amortized by
 - Multiple uses
 - Multiuse materials
 - Shorter hospital stay
- We should remember, however, that costs between procedures can be hardly compared due to different national healthcare system differences, management strategy of the surgical team, surgical tradition, hospital strategies, reimbursement policies ecc.
We acknowledge that laparoscopic experience is needed in order to overcome the learning curve and avoid complications.

However, we are unaware of studies that report the learning curve of open simple prostatectomy.

We think that the clinical practice is distributed in function of competence: in a department that routinely uses laparoscopy the procedure is performed without great difficulties and in reasonable time.

Digital assistance can always be used, reducing further the risk of wrong dissection planes as well as surgical time.
LSP vs OSP

<table>
<thead>
<tr>
<th>Procedural type</th>
<th>Study</th>
<th>N° of pts</th>
<th>Operative time</th>
<th>EBL</th>
<th>Irrigation time (d)</th>
<th>Catheterization</th>
<th>Hospital stay</th>
<th>Transfusion rates</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP vs OSP</td>
<td>Baumert 2006</td>
<td>30 vs 30</td>
<td>115±30 vs 54±19</td>
<td>367±363 vs 643±647</td>
<td>0.33±0.7 vs 4±3.7</td>
<td>4±1.7 vs 6.8±4.7</td>
<td>5.1±1.8 vs 8±4.8</td>
<td>3.33% vs 16.7% (ns)</td>
<td>No difference in incidence and severity of complications and in functional outcomes</td>
</tr>
<tr>
<td>LSP vs OSP</td>
<td>McCullough 2009</td>
<td>96 vs 184</td>
<td>95.1±32.9 vs 54.7± 19.7</td>
<td>5.2±2.6 vs 6.4±2.9</td>
<td>63 ±1.9 v 7.7 ± 2.4</td>
<td>6.3+1.9 vs 7.7+1.6</td>
<td>Similar bleeding rates Of the 19 urinary tract infections observed between the two groups, 18 occurred in OSP as well as all 9 cases of urinary sepsis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSP vs OSP</td>
<td>Porpiglia 2006</td>
<td>20 vs 20</td>
<td>107.25±34.9 vs 95.5+22.5</td>
<td>411.6+419 vs 687.5+298.6</td>
<td>6.3+3.7 Vs 5.6+1.1</td>
<td>7.8+4.1 Vs 7+1.6</td>
<td>1 patient of LSP re-operated for bleeding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quindi...

- Routine implementation of a laparoscopic variant of a procedure that is well-established is difficult.
- It is not our aim to demonstrate that laparoscopic adenomectomy should be performed for large adenomas instead of the open one;
- however, we can affirm that the laparoscopic approach is a valid alternative in the urologic armamentarium for the treatment of large adenomas.
- LSP not sostitutive BUT alternative to OSP
Do our patients need it?

...we can reply that patients –more and more educated and informed- need the best; it is upon the surgeon’s experience and preference to choose the approach that -in his hands- will provide the best results for a given patient with his given disease.
Laparoscopic Simple Prostatectomy— which candidate?

• Reserved for centers WITHOUT 80-100W Holmium laser but WITH advanced laparoscopic skill set
Robotic simple prostatectomy

<table>
<thead>
<tr>
<th>7 patients</th>
<th>Av</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>64.66</td>
<td>56–72</td>
<td>5.35</td>
</tr>
<tr>
<td>Operative time (mins)</td>
<td>195</td>
<td>120–300</td>
<td>84.32</td>
</tr>
<tr>
<td>Blood loss (ml)</td>
<td>381.66</td>
<td>60–800</td>
<td>337.18</td>
</tr>
<tr>
<td>Catheterization (days)</td>
<td>7.5</td>
<td>6–10</td>
<td>1.64</td>
</tr>
<tr>
<td>Drainage (days)</td>
<td>3.5</td>
<td>3–4</td>
<td>0.54</td>
</tr>
<tr>
<td>Hospitalization (days)</td>
<td>1.33</td>
<td>1–2</td>
<td>0.61</td>
</tr>
<tr>
<td>(USTR) prostate vol (gm)</td>
<td>77.66</td>
<td>40–106</td>
<td>22.98</td>
</tr>
</tbody>
</table>

Single-port transvesical SPx